
Phylogenetic Inference using RevBayes
Model Selection & Data Partitioning

Overview
RevBayes has as a central idea that phylogenetic models, like any statistical model, are composed of smaller
parts that can be decomposed and put back together in a modular fashion. This comes from considering
phylogenetic models as probabilistic graphical models, which lends flexibility and enhances the capabilities
of the program. RevBayes implements an R-like language (complete with control statements, user-defined
functions, and loops) that enables the user to build up phylogenetic models from simple parts (random
variables, transformations, models, and constants of different sorts).

This tutorial demonstrates how to set up and perform an analysis that calculates Bayes factors to select
among different partition configurations of aligned DNA sequences. After selecting the model that is best
supported by the data, the exercise continues with basic inference of an unrooted tree topology and branch
lengths using Markov chain Monte Carlo (MCMC).

0.1 Probabilistic Graphical Models

RevBayes uses probabilistic graphical models for model specification, visualization, and implementation
(Höhna et al., 2014). Graphical models are frequently used in machine learning and statistics to visually
represent the conditional dependence structure of complex statistical models with many parameters (Gilks,
Thomas and Spiegelhalter, 1994; Lunn et al., 2000; Jordan, 2004; Koller and Friedman, 2009; Lunn et al.,
2009). The graphical model tool kit allows for flexible model specification and implementation and reduces
redundant code. This framework provides a set of symbols for depicting a directed acyclic graph (DAG).
Höhna et al. (2014) described the use of probabilistic graphical models for phylogenetics. The different
nodes and components of a phylogenetic graphical model are shown in Figure 1 (Fig. 1 from Höhna et al.,
2014).

Figure 1: The symbols for a visual representation of a graphical model. a) Solid squares represent constant nodes,
which specify fixed-valued variables. b) Stochastic nodes are represented by solid circles. These variables correspond
to random variables and may depend on other variables. c) Deterministic nodes (dotted circles) indicate variables that
are determined by a specific function applied to another variable. They can be thought of as variable transformations.
d) Observed states are placed in clamped stochastic nodes, represented by gray-shaded circles. e) Replication over a
set of variables is indicated by enclosing the replicated nodes in a plate (dashed rectangle). [Replicated from Fig. 1
in Höhna et al. (2014).]
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To represent the DAG, nodes are connected with arrows indicating dependency. A simple, albeit abstract,
graphical model is shown in Figure 2. In this model, we observe a set of states for parameter x. We assume
that the values of x are samples from a lognormal distribution with a location parameter (log mean) µ
and a standard deviation σ. It is more straightforward to model our uncertainty in the expectation of a
lognormal distribution, rather than µ, thus we place a gamma distribution on the mean M . This gamma
hyperprior has two parameters that we specify with fixed values (constant nodes): the shape α and rate β.
With this prior density, the variable M is a stochastic node. The standard deviation, σ, is also a stochastic
node with an exponential prior density with rate parameter λ. For any value of M and any value of σ
we can compute the deterministic variable µ using the formula µ = ln(M) − σ2

2 . This formula is known
from using simple algebra on the equation for the mean of any lognormal distribution. With this model
structure, we can then calculate the probability of the data conditional on the model (the likelihood):
P(x | µ, σ). With this, we can get the posterior probability using Bayes’ theorem:

P(M, σ | x, α, β, λ) = P(x | µ, σ)P(M | α, β)P(σ | λ)
P(x)

.

Figure 2: Graphical model representation of a simple lognormal model. A total of N states of parameter x are
observed and occupy a clamped node. This parameter is log-normally distributed with parameters µ and σ (log
mean and standard deviation, respectively). The parameter µ is a deterministic node that is calculated from the
stochastic nodes M (the mean of the distribution) and σ. Dotted arrows indicate deterministic functions and are
used to connect deterministic nodes to their parent variables. A gamma distribution is applied as a hyper prior on
M with constant nodes for the shape α and rate β. The stochastic variable σ is exponentially distributed with fixed
value for the rate λ.

For phylogenetic graphical model representations, Höhna et al. (2014) introduced a new element called
the tree plate. This is a convenience for visualization because, although a phylogenetic tree is a graphical
model, the complexity becomes intractable for large trees. Thus, the tree plate depicts replication over a
given topology. The full graphical model with the unrooted tree plate for the GTR+Γ model used in this
tutorial is shown in Figure 3. Note that even unrooted analyses arbitrarily assign a root node to orient the
tree.

For any phylogenetic model using homologous characters, the state at the tips — e.g., the nucleotide at
a given position in the alignment — is the observed value and clamped to the phylogenetic continuous-
time Markov chain (CTMC). The state at any node is conditionally dependent on the sate of the parent
node, thus knowing the topological ordering of nodes is important. Further, the state at any node is
also dependent on other variables, such as the branch length, site rate, base frequencies, and relative
substitution rates in a GTR+Γ model as in Figure 3. This structure can be shown explicitly in a graphical
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Figure 3: The general-time reversible model (Tavaré, 1986) with gamma-distributed rate variation across sites
(Yang, 1994): GTR+Γ. The tree plate separates the nodes of the tree into different categories. For any tree there
is a vector of tip nodes, a vector of internal nodes, and a root node. The stochastic node Ψ orders the nodes in the
tree plate. This representation allows for a simpler presentation of a complex model on a tree. Each internal and
tip node have a branch length applied to the branch connecting to the parent node. The branch length for node i
is denoted by the stochastic node νi, and every branch-length node is conditioned on the rate parameter λ of the
exponential hyperprior. The parameters of the GTR model include the exchangability rates θ and the equilibrium
base frequencies π. The node θ is dependent on the constant hyperparameter e which represents the vector of
concentrations that control the Dirichlet prior on the stochastic node θ. Likewise, the stochastic node π depends
on the Dirichlet parameters specified in b. The site rate model represented here is the discretized gamma model
over four rate categories. The stochastic node denoted α controls the shape of that gamma distribution. The rate
parameter β of the gamma distribution is a deterministic node. Since we assume that the mean of the distribution
on site rates is equal to 1, then the function that determines the value of β is β = α. The density of the gamma is
discretized into 4 rate categories and the rate for each category is γk, for k ∈ 1, . . . , 4. Then a rate value is computed
for each site: rj for j ∈ N , where N is the number of sites.

model by fully representing the tree (for examples see Höhna et al., 2014). However, even a relatively small
tree of 15 tips becomes difficult to represent in this way. Thus, the tree plate shows this structure and can
also depict the topology as a stochastic node (fig. 3)

0.2 The Rev Language

In RevBayes models and analyses are specified using an interpreted language called Rev. The Rev language
bears similarities to the compiled language in WinBUGS and the interpreted R language. Setting up and
executing a statistical analysis in RevBayes requires the user to specify all of the parameters of their model
and the type of analysis (e.g., an MCMC run). By using an interpreted language, RevBayes enables the
practitioner to build complex, hierarchical models.

Specifying Models

The nodes representing parameters of a statistical model are created using different operators in the Rev
language (Table 1). In Figure 4, the Rev syntax for creating the model in Figure 2 is provided. Because
Rev is an interpreted language, it is important to consider the order in which you specify your model.
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Table 1: Rev language node assignment operators, clamp function, and plate/loop syntax.
Operator Node
<- constant node
~ stochastic node
:= deterministic node
node.clamp(data) clamped node
for(i in 1:N){...} plate

Thus, typically the first nodes that are instantiated are constant nodes. Constant nodes require you to
assign a fixed value to the parameter using the <- operator. Stochastic nodes are initialized using the
~ operator followed by the constructor function for a distribution. In the Rev language, the naming
convention for distributions is dn*, where * is a wildcard representing the name of the distribution. Each
distribution function requires hyperparameters passed in as arguments. This is effectively linking nodes
using arrows in the graphical model. The following specifies a stochastic node called M which is assigned a
gamma-distributed hyperprior, with shape alpha and rate beta:

alpha <- 2.0
beta <- 4.0
M ~ dnGamma(alpha, beta)

The flexibility gained from the graphical model framework and the interpreted language allows you to easily
change a model by swapping components. For example, if you decide that a bimodal lognormal distribution
is a better representation of your uncertainty in M, then you can simply change the distribution associated
with M (after initializing the bimodal lognormal hyperparameters):

mean_1 <- 0.5
mean_2 <- 2.0
sd_1 <- 1.0
sd_2 <- 1.0
weight <- 0.5
M ~ dnBimodalLnorm(mean_1, mean_2, sd_1, sd_2, weight)

The Rev language does allows you to specify constant-node values in the distribution constructor function,
therefore this also works:

M ~ dnBimodalLnorm(0.5, 2.0, 1.0, 1.0, 0.5)

Deterministic nodes are variable transformations and initialized using the := operator followed by the
function or formula for calculating the value. Thus, if you had an exponentially distributed stochastic
node and you also wanted to monitor the square root of that variable, you can create a deterministic node:
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Figure 4: Specifying a model in the Rev language. The graphical model of the observed parameter x is shown on
the left. In this example, x is log-normally distributed with a location parameter of µ and a standard deviation of σ,
thus x ∼ Lognormal(µ, σ). The expected value of x (or mean) is equal to M : E(x) = M . In this model, M and σ are
random variables and each are assigned hyperpriors. We assume that the mean is drawn from a gamma distribution
with shape parameter α and rate parameter β: M ∼ Gamma(α, β). The standard deviation of the lognormal
distribution is assigned an exponential hyperprior with rate λ: σ ∼ Exponential(λ). Since we are conditioning our
model on the expectation, we must compute the location parameter (µ) to calculate the probability of our model.
Thus, µ is a deterministic node that is the result of the function∗ executed on M and σ: µ = ln(M) − σ2

2 . Since we
observe values of x, we clamp this node. ∗[Note that a current bug in the language related to nested functions means that mu :=
ln(M) - (power(sigma, 2.0) / 2.0) does not correctly identify the parent nodes of mu. To work around this, we need two additional
deterministic nodes: lnM := ln(M) and variance := power(sigma, 2.0). And mu is changed to mu := lnM - (variance / 2.0).]

p ~ dnExponential(1.0)
sq_p := sqrt(p)

Replication over lists of variables as a plate object is specified using for loops. A for-loop is an iterator
statement that performs a function a given number of times. In RevBayes you can use this syntax to create
a vector of 12 stochastic nodes, each drawn from a Poisson distribution:

rate <- 2.5
for( i in 1:12 ){
p[i] ~ dnPoisson(rate)

}

A clamped node is attached to observed data. Thus, you must first read in or input the data as a constant
node, then clamp it to a stochastic node. In Figure 4 the observations are assigned and clamped to the
stochastic nodes. If we observed 7 values for x we would create 7 clamped nodes:
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observations <- [0.20, 0.21, 0.03, 0.40, 0.65, 0.87, 0.22]
N <- observations.size()
for( i in 1:N ){
x[i] ~ dnLognormal(mu, sigma)
x[i].clamp(observations.clamp)

}

Continue on to the next page to start the exercise...
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1 Exercise: Model Selection & Partitioning using Bayes Factors

1.1 Introduction

Variation in the evolutionary process across the sites of nucleotide sequence alignments is well established,
and is an increasingly pervasive feature of datasets composed of gene regions sampled from multiple loci
and/or different genomes. Inference of phylogeny from these data demands that we adequately model the
underlying process heterogeneity; failure to do so can lead to biased estimates of phylogeny and other
parameters (Brown and Lemmon, 2007). To accommodate process heterogeneity within and/or between
various gene(omic) regions, we will evaluate the support for various partition schemes using Bayes factors
to compare the marginal likelihoods of the candidate partition schemes.

Accounting for process heterogeneity involves adopting a ‘mixed-model’ approach, (Ronquist and Huelsen-
beck, 2003) in which the sequence alignment is first parsed into a number of partitions that are intended to
capture plausible process heterogeneity within the data. The determination of the partitioning scheme is
guided by biological considerations regarding the dataset at hand. For example, we might wish to evaluate
possible variation in the evolutionary process within a single gene region (e.g., between stem and loop
regions of ribosomal sequences), or among gene regions in a concatenated alignment (e.g., comprising mul-
tiple nuclear loci and/or gene regions sampled from different genomes). The choice of partitioning scheme
is up to the investigator and many possible partitions might be considered for a typical dataset.

Next, a substitution model is specified for each predefined process partition (using a given model-selection
criterion, such as Bayes factors). In this exercise, we assume that each partition evolved under an indepen-
dent general-time reversible model with gamma-distributed rates across sites (GTR+Γ). Under this model
the observed data are conditionally dependent on the exchangeability rates (θ), stationary base frequen-
cies (π), and the degree of gamma-distributed among-site rate variation (α), as well as the unrooted tree
topology (Ψ) and branch lengths (ν). We show the graphical model representation of the GTR+Γ mode in
Figure 3. When we assume different GTR+Γ models for each partitions, this results in a composite model,
in which all sites are assumed to share a common, unrooted tree topology and proportional branch lengths,
but subsets of sites (‘data partitions’) are assumed to have independent substitution model parameters.
This composite model is referred to as a mixed model.

Finally, we perform a separate MCMC simulation to approximate the joint posterior probability density of
the phylogeny and other parameters. Note that, in this approach, the mixed model is a fixed assumption
of the inference (i.e., the parameter estimates are conditioned on the specified mixed model), and the
parameters for each process partition are independently estimated.

For most sequence alignments, several (possibly many) partition schemes of varying complexity are plau-
sible a priori, which therefore requires a way to objectively identify the partition scheme that balances
estimation bias and error variance associated with under- and over-parameterized mixed models, respec-
tively. Increasingly, mixed-model selection is based on Bayes factors (e.g., Suchard, Weiss and Sinsheimer,
2001), which involves first calculating the marginal likelihood under each candidate partition scheme and
then comparing the ratio of the marginal likelihoods for the set of candidate partition schemes (Brandley,
Schmitz and Reeder, 2005; Nylander et al., 2004; McGuire et al., 2007). The analysis pipeline that we will
use in this tutorial is depicted in Figure 5.

Given two models, M0 and M1, the Bayes factor comparison assessing the relative plausibility of each
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Unpartitioned alignment
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Figure 5: The analysis pipeline for Exercise 1. We will explore three partition schemes for the conifer dataset. The
first model (the ‘uniform model’, M0) assumes that all sites evolved under a common GTR+Γ substitution model.
The second model (the ‘moderately partitioned’ model, M1) invokes two data partitions corresponding to the two
gene regions (atpB and rbcL), and assumes each subset of sites evolved under an independent GTR+Γ model. The
final mixed model (the ‘highly partitioned’ model, M2) invokes four data partitions—the first partition corresponds to
the atpB gene region, and the remaining partitions correspond to the three codon positons of the rbcL gene region—
and each data partition is assumed evolved under an independent GTR+Γ substitution model. Note that we assume
that all sites share a common tree topology, Ψ, and branch-length proportions, ν, for each of the candidate partition
schemes. We perform two separate sets of analyses for each mixed model—a Metropolis-coupled MCMC simulation
to approximate the joint posterior probability density of the mixed-model parameters, and a ‘stepping-stone’ MCMC
simulation to approximate the marginal likelihood for each mixed model. The resulting marginal-likelihood estimates
are then evaluated using Bayes factors to assess the fit of the data to the three candidate mixed models.

model as an explanation of the data, BF (M0, M1), is:

BF (M0, M1) = posterior odds
prior odds .

The posterior odds is the posterior probability of M0 given the data, X, divided by the posterior odds of
M1 given the data:

posterior odds = P(M0 | X)
P(M1 | X)

,

and the prior odds is the prior probability of M0 divided by the prior probability of M1:

prior odds = P(M0)
P(M1)

.

Thus, the Bayes factor measures the degree to which the data alter our belief regarding the support for
M0 relative to M1 (Lavine and Schervish, 1999):

BF (M0, M1) = P(M0 | X, θ0)
P(M1 | X, θ1)

÷ P(M0)
P(M1)

. (1)
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This, somewhat vague, definition does not lead to clear-cut identification of the “best” model. Instead,
you must decide the degree of your belief in M0 relative to M1. Despite the absence of any strict “rule-of-
thumb”, you can refer to the scale (outlined by Jeffreys, 1961) for interpreting these measures (Table 2).

Table 2: The scale for interpreting Bayes factors by Harold Jeffreys (1961).
BF (M0, M1) Strength of evidence
< 1 : 1 Negative (supports M1)
1 : 1 to 3 : 1 Barely worth mentioning
3 : 1 to 10 : 1 Substantial
10 : 1 to 30 : 1 Strong
30 : 1 to 100 : 1 Very strong
> 100 : 1 Decisive
For a detailed description of Bayes factors see Kass and Raftery (1995)

Unfortunately, direct calculation of the posterior odds to prior odds ratio is unfeasible for most phylogenetic
models. However, we can further define the posterior odds ratio as:

P(M0 | X)
P(M1 | X)

= P(M0)
P(M1)

P(X | M0)
P(X | M1)

,

where P(X | Mi) is the marginal likelihood of the data marginalized over all parameters for Mi; it is also
referred to as the model evidence or integrated likelihood. More explicitly, the marginal likelihood is the
probability of the set of observed data (X) under a given model (Mi), while averaging over all possible
values of the parameters of the model (θi) with respect to the prior density on θi

P(X | Mi) =
∫

P(X | θi)P(θi)dt. (2)

If you refer back to equation 1, you can see that, with very little algebra, the ratio of marginal likelihoods
is equal to the Bayes factor:

BF (M0, M1) = P(X | M0)
P(X | M1)

= P(M0 | X, θ0)
P(M1 | X, θ1)

÷ P(M0)
P(M1)

. (3)

Therefore, we can perform a Bayes factor comparison of two models by calculating the marginal likelihood
for each one. Alas, exact solutions for calculating marginal likelihoods are not known for phylogenetic
models (see equation 2), thus we must resort to numerical integration methods to estimate or approximate
these values. In this exercise, we will estimate the marginal likelihood for each partition scheme using both
the stepping-stone (Xie et al., 2011) and path sampling estimators (Gelman and Meng, 1998; Lartillot and
Philippe, 2006; Friel and Pettitt, 2008).

1.2 Getting Started

This tutorial assumes that you have already downloaded, compiled, and installed RevBayes. We also
recommend that—if you are working on a Unix machine—you put the rb binary in your path.

For the exercises outlined in this tutorial, we will use RevBayes interactively by typing commands in the
command-line console. The format of this exercise uses lavender blush shaded boxes to delineate
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important steps. The various RevBayes commands and syntax are specified using typewriter text. And
the specific commands that you should type (or copy/paste) into RevBayes are indicated by shaded box
and prompt. For example, after opening the RevBayes program, you can load your data file:

RevBayes > data_atpB <- readCharacterData("data/conifer_atpB.nex")[1]

For this command, type in the command and its options:
data_atpB <- readCharacterData("data/conifer_atpB.nex")[1]. DO NOT type in “RevBayes >”,
the prompt is simply included to replicate what you see on your screen.

Multi-line entries, particularly loops, will often be displayed in boxes without the RevBayes > prompt so
that they can be copied and pasted wholly.

for( i in 1:12 ){
x[i] ~ dnExponential(1.0)

}

This tutorial also includes hyperlinks: bibliographic citations are burnt orange and link to the full citation
in the references, external URLs are cerulean, and internal references to figures and equations are purple.

The various exercises in this tutorial take you through the steps required to perform phylogenetic analyses
of the example datasets. In addition, we have provided the output files for every exercise so you can verify
your results. (Note that since the MCMC runs you perform will start from different random seeds, the
output files resulting from your analyses will not be identical to the ones we provide you.)

• Download data and output files from: https://molevol.mbl.edu/index.php/RevBayes

• Open the file data/conifer_atpB.nex in your text editor. This file contains the sequences for the
atpB gene sampled from 9 species (Box 1). The elements of the DATA block indicate the type of data,
number of taxa, and length of the sequences.

Box 1: A fragment of the NEXUS file containing the atpB sequences for this exercise.

#NEXUS

Begin data;
Dimensions ntax=9 nchar=1394;
Format datatype=dna gap=-;
Matrix

Ginkgo_biloba TTATTGGTCCAGTACTGGATGTAGCTTTTCCCCCGGGCAATATGCCTAATATTTACAATTCTTTG...
Araucaria_araucana -----GGTCCGGTACTGGATGTATCTTTTCCTCCAGATGAAATGCCCTATATTTACAATTCTTTG...
Cedrus_deodara TCATTGGCCCAGTACTGGA?GTCTCTTTTCCTCCAGGTAATATGCCTAATATTTACAATTCATTG...
Cupressus_arizonica -----------------GATGTATCTTTCCCTCCAGGTAGTATGCCTAGAATTTACAATTCTTTG...
Juniperus_communis -----------------------------------------------------------------...
Pinus_densiflora TCATTGGCCCAGTACTGGATGTCTCTTTTCCTCCAGGTAATATGCCTAATATTTACAATTCATTG...
Podocarpus_chinensis TCATCGGCCCTGTACTGGATGTATCTTTTCCTCCAGATGGTATGCCTTTTATTTACAATTCTTTA...
Sciadopitys_verticillata TCATTGGTCCAGTACTAGATGTATCTTTCCCTCCAGGCAATATGCCTAGAATTTACAATTCTTTG...
Taxus_baccata TTATCGGCCCAGTACTAGATGTCTCTTTTCCTCCAGGTAATATGCCTAAAATTTACAATTCCTTA...

;
End;
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• Also note that “pre-cooked” output files are provided in the download. Throughout this tutorial, you
can use those files to summarize output if you do not have time to run the full analyses yourself.

1.3 Launch RevBayes

Execute the RevBayes binary. If this program is in your path, then you can simply type in your Unix
terminal:

• $ rb

When you execute the program, you will see the program information, including the current version number
and functions that will provide information about the program — contributors() and license().

Currently, the help-system of RevBayes is virtually nonexistent. This will not always be the case, but is
par for the course when using new/experimental software. The most complete help file available is for the
mcmc() function. Display the help for this function using the ? symbol:

RevBayes > ?mcmc

Additionally, RevBayes will print the correct usage of a function if it is executed without any arguments:

RevBayes > mcmc()
Error: Argument mismatch for call to function 'mcmc'( ). Correct usage is:
MCMC function (Model model, VectorRbPointer<Monitor> monitors,
VectorRbPointer<Move> moves, String moveschedule = sequential|random|single)

1.4 An Unpartitioned Analysis

Black Box Analysis

The first section of this exercise involves (1) setting up a uniform GTR+Γ model for an alignment com-
prising two genes, (2) approximating the posterior probability of the tree topology and branch lengths
(and all other parameters) using MCMC, (3) summarizing the MCMC output by computing the maximum
a posteriori tree, and (4) estimating the marginal likelihood of the model using stepping-stone and path
sampling.

All of the files for this analysis are provided for you and you can run these without significant effort using
the source() function in the RevBayes console:

RevBayes > source("RevBayes_scripts/quick_uniform.Rev")

If everything loaded properly, then you should see the program begin running the power posterior analysis
needed for estimating the marginal likelihood. If you continue to let this run, then you will see it output
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the states of the Markov chain once the MCMC analysis begins. (It is worth noting, however, that the file
quick_uniform.Rev performs shorter runs with fewer generations for a faster run time.)

Ultimately, this is how you will execute most analyses in RevBayes and the full specification of the model
and analyses are contained in the sourced files. You could easily run this entire analysis on your own
data if you changed the name of the files containing the tutorial’s sequences in the model specification file:
RB_tutorial_files/uniform_partition_model.Rev. However, it is important to understand the com-
ponents of the model to be able to take advantage of the flexibility and richness of RevBayes. Furthermore,
without inspecting the Rev scripts sourced in quick_uniform.Rev, you may have inadvertently conducted
an inappropriate analysis on your dataset, which would be a waste of your time and CPU cycles. The next
steps will walk you through the full specification of the model and MCMC analyses.

Full Model Specification

Load Data

First load in the sequences using the readCharacterData() function. This function returns a vector of
data matrices and, even though there is only one element in the vector, we must index that element using
the [1] notation. (You will also note that list indexing in Rev starts with 1 like in the R language.)

RevBayes > data_atpB <- readCharacterData("data/conifer_atpB.nex")[1]
RevBayes > data_rbcL <- readCharacterData("data/conifer_rbcL.nex")[1]

Executing these lines initializes each data matrix as their respective Rev variables. Since the first step in
this exercise is to assume a single model for both genes, we need to combine the two datasets. Concatenate
the two data matrices using the + operator. This returns a single data matrix with both genes.

RevBayes > data <- data_atpB + data_rbcL

To report the current value of any variable, simply type the variable name and press enter. For the data
matrix, this provides information about the alignment:

RevBayes > data
Origination: conifer_atpB.nex
Number of taxa: 9
Number of characters: 2659
Number of included characters: 2659
Datatype: DNA

Next we will specify some useful variables based on our dataset. The variable data has member functions
that we can use to retrieve information about the dataset. These include the number of species (n_species),
the tip labels (names), and the number of internal branches (n_branches). Each of these variables will be
necessary for setting up different parts of our model.
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RevBayes > n_species <- data.ntaxa()
RevBayes > names <- data.names()
RevBayes > n_branches <- 2 * n_species - 3

Now we can proceed with building our GTR+Γ model.

The GTR Parameters

The first step in this exercise involves estimating the marginal likelihood of our model assuming an unpar-
titioned alignment. This corresponds to the assumption that the process that gave rise to our data was
homogeneous across all sites. Specifically, we will assume that both genes evolved under the same GTR+Γ
model (Fig. 5).

First, we will define and specify a prior on the exchangeability rates of the GTR model. We will use a flat
Dirichlet prior distribution on these six rates. To do this, we must begin by defining a constant node that
specifies the vector of concentration values of the Dirichlet prior using the v() function:

RevBayes > er_prior <- v(1,1,1,1,1,1)

The constant node er_prior corresponds to the node labeled e in the graphical model depicted in Figure
3. The vector function, v(), creates a vector of six values. Display the current value of er_prior by simply
typing the variable name:

RevBayes > er_prior
[ 1, 1, 1, 1, 1, 1 ]

This node defines the parameters of the Dirichlet prior distribution on the exchangeability rates. Thus, we
can create a stochastic node for the exchangeability rates using the dnDirichlet() function, which takes
a vector of values as an argument and the ~ operator. Together, these create a stochastic node named er
(θ in Figure 3):

RevBayes > er ~ dnDirichlet(er_prior)

The Dirichlet distribution assigns probability densities to grouped parameters: e.g., those that measure
proportions and must sum to 1. Above, we specified a 6-parameter Dirichlet prior on the relative rates
of the GTR model, where the placement of each value specified represents one of the 6 relative rates: (1)
A ⇆ C, (2) A ⇆ G, (3) A ⇆ T , (4) C ⇆ G, (5) C ⇆ T , (6) G ⇆ T . The input parameters of a Dirichlet
distribution are called shape parameters or concentration parameters and a value is specified for each of
the 6 GTR rates. The expectation and variance for each variable are related to the sum of the shape
parameters. The prior above is a ‘flat’ or symmetric Dirichlet since all of the shape parameters are equal
(1,1,1,1,1,1), thus we are specifying a model that allows for equal rates of change between nucleotides, such
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that the expected rate for each is equal to 1
6 (Zwickl and Holder, 2004). Figure 6a shows the probability

density of each rate under this model. If we parameterized the Dirichlet distribution such that all of the
parameters were equal to 100, this would also specify a prior with an expectation of equal exchangeability
rates (Figure 6b). However, by increasing the shape parameters of the Dirichlet distribution, er_prior
<- v(100,100,100,100,100,100), would heavily restrict the MCMC from sampling sets of GTR rates in
which the values were not equal or very nearly equal (i.e., this is a very informative prior). We can con-
sider a different Dirichlet parameterization if we had strong prior belief that transitions and transversions
occurred at different rates. In this case, we could specify a more informative prior density: er_prior <-
v(4,8,4,4,8,4). Under this model, the expected rate for transversions would be 4

32 and the expected
rate for transitions would equal 8

32 , and there would be greater prior probability on sets of GTR rates that
matched this configuration (Figure 6c). An alternative informative prior would be one where we assumed
that each of the 6 GTR rates had a different value conforming to a Dirichlet(2,4,6,8,10,12). This would
lead to a different prior probability density for each rate parameter (Figure 6d). Without strong prior
knowledge about the pattern of relative rates, however, we can better capture our statistical uncertainty
with a vague prior on the GTR rates. Notably, all patterns of relative rates have the same probability
density under er_prior <- v(1,1,1,1,1,1).
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Figure 6: Four different examples of Dirichlet priors on exchangeability rates.

For each stochastic node in our model, we must also specify a proposal mechanism if we wish to sample
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that value. The Dirichlet prior on our parameter er creates a simplex of values that sum to 1. In RevBayes,
there are many different proposal mechanisms – called moves – and each move operates on a specific data
type (called RevType). Check the RevType of the variable er using the structure() function:

RevBayes > structure(er)

_variable = er <0x7ffed8449370>
_RevType = Simplex
_RevTypeSpec = [ Simplex, RealPos[], ModelContainer, Container, RevObject ]
_value = [ 0.00308506, 0.491487, 0.186317, 0.0275106, 0.1982...
_size = 6
_dagNode = er <0x7ffed8448bb0>
_dagType = Stochastic DAG node
_refCount = 1
_distribution = <0x7ffed8448cf0>
_touched = TRUE
_clamped = FALSE
_lnProb = -inf
_storedLnProb = 6.95325e-310
_parents = [ er_prior <0x7ffed8449250> ]
_children = [ ]

The structure() function – which has an accepted abbreviation of str() – is verbose and provides a lot of
information that may at first appear confusing. In particular, this function provides the memory addresses
of the node, its parent node(s), and the distribution. These strings indicate the location of the variable in
computer memory. Thus, if you view the structure of your er node, these sequences of numbers will be
different from the ones in the box above. Much of this information is helpful primarily for troubleshooting
and debugging purposes, however, the components that you may want to look at are: RevType, value,
dagType, clamped, lnProb, and the names of the variable, parents, and children.

We must create a vector containing all of the moves for each of our stochastic nodes. This vector will be
passed in to the function constructing our MCMC or power posterior runs. All moves in the Rev language
are called mv*, where * is a wild card for the move name. Initialize the first element of our vector of moves
by setting the proposal on the exchangeability rates:

RevBayes > moves[1] <- mvSimplexElementScale(er, alpha=10, tune=true, weight=3)

The various proposal mechanisms available in RevBayes each require specific input arguments. The
mvSimplexElementScale move can only operate on a simplex and the first argument is the stochastic
node that you wish to update. The variable node is followed by three more arguments: (1) alpha is the
tuning parameter of the move and controls the size of the proposal; (2) by setting tune=true we are telling
the program to adjust the tuning parameter if the acceptance rate of the proposal is too high or too low –
the target for this move is an acceptance rate of 0.44; (3) the weight specifies how frequently this move is
performed at each step in the Markov chain.

It is important to note that by default, a single generation in RevBayes updates all stochastic nodes in
proportion to the weight argument specified. This approach is different from many phylogenetic MCMC
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programs – such as MrBayes – which only perform one move per MCMC iteration. Instead, for each
generation in RevBayes, a move list is carried out in random order. By setting weight=3 above, we are
ensuring that the new values are proposed for er three times per iteration. Thus, if you set weight=0.5 the
move will only have a 50% chance of occurring at each generation. Essentially, the weight argument for
each move indicates the number of times it will be performed. If you keep all of the move weights set to the
values specified in this tutorial for the uniform model, you will have set 20 different moves and the MCMC
simulator will execute 38 moves per generation. This is a practical approach for MCMC analysis using
complex models and is used by several other programs (Phylobayes, Phycas, Bali-Phy). However, because
RevBayes is updating many parameters each generation, it is not straightforward to compare run-times
with a program like MrBayes that only performs approximately one update per generation. Furthermore,
using this approach to MCMC simulation, you can sufficiently sample the chain in fewer generations while
sampling more frequently than you would in programs that only perform one update per step.

We can use the same type of distribution as a prior on the 4 stationary frequencies (πA, πC , πG, πT ) since
these parameters also represent proportions. Specify a flat Dirichlet prior density on the base frequencies:

RevBayes > sf_prior <- v(1,1,1,1)
RevBayes > sf ~ dnDirichlet(sf_prior)

The node sf represents the π node in Figure 3. Now add the simplex scale move on the stationary
frequencies to the moves vector:

RevBayes > moves[2] <- mvSimplexElementScale(sf, alpha=10, tune=true, weight=2)

We can finish setting up this part of the model by creating a deterministic node for the GTR rate matrix
Q. The gtr() function takes a set of exchangeability rates and a set of base frequencies to compute the
rate matrix used when calculating the likelihood of our model.

RevBayes > Q := gtr(er,sf)

Gamma-Distributed Site Rates

We will also assume that the substitution rates vary among sites according to a gamma distribution, which
has two parameters: the shape parameter, α, and the rate parameter, β. In order that we can interpret
the branch lengths as the expected number of substitutions per site, this model assumes that the mean site
rate is equal to 1. The mean of the gamma is equal to α/β, so a mean-one gamma is specified by setting
the two parameters to be equal, α = β. Therefore, we need only consider the single shape parameter, α
(Yang, 1994). The degree of among-site substitution rate variation (ASRV) is inversely proportional to
the value of the shape parameter—as the value of α-shape parameter increases, the gamma distribution
increasingly resembles a normal distribution with decreasing variance, which corresponds to decreasing
levels of ASRV (Figure 7). If α = 1, then the gamma distribution collapses to an exponential distribution
with a rate parameter equal to β. By contrast, when the value of the α-shape parameter is < 1, the gamma
distribution assumes a concave distribution that places most of the prior density on low rates but allows
some prior mass on sites with very high rates, which corresponds to high levels of ASRV (Figure 7).
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Figure 7: The probability density of mean-one gamma-distributed rates under different shape parameters.

Alternatively, we might not have good prior knowledge about the variance in site rates, thus we can place
an uninformative, or diffuse prior on the shape parameter. For this analysis, we will use an exponential
distribution with a rate parameter, shape_prior, equal to 0.05. Under an exponential prior, we are
placing non-zero probability on values of α ranging from 0 to ∞. The rate parameter, often denoted λ, of
an exponential distribution controls both the mean and variance of this prior such that the expected (or
mean) value of α is: E[α] = 1

λ . Thus, if we set λ = 0.05, then E[α] = 20.

Create a constant node called shape_prior for the rate parameter of the exponential prior on the gamma-
shape parameter

RevBayes > shape_prior <- 0.05

Then create a stochastic node called shape to represent the α node in Figure 3, with an exponential density
as a prior:

RevBayes > shape ~ dnExponential(shape_prior)

The way the ASRV model is implemented involves discretizing the mean-one gamma distribution into
a set number of rate categories. Thus, we can analytically marginalize over the uncertainty in the rate
at each site. To do this, we need a deterministic node that is a vector of rates calculated from the
gamma distribution and the number of rate categories. The discretizeGamma() function returns this
deterministic node and takes three arguments: the shape and rate of the gamma distribution and the
number of categories. Since we want to discretize a mean-one gamma distribution, we can pass in shape
for both the shape and rate.

Initialize the gamma_rates deterministic node vector using the discretizeGamma() function with 4 bins:
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RevBayes > gamma_rates := discretizeGamma( shape, shape, 4 )

The random variable that controls the rate variation is the stochastic node shape. This variable is a single,
real positive value (RevType = RealPos). We will apply a simple scale move to this parameter. The scale
move’s tuning parameter is called lambda and this value dictates the size of the proposal.

moves[3] <- mvScale(shape, lambda=1.0, tune=true, weight=2.0)

Tree Topology and Branch Lengths

The tree topology and branch lengths are also stochastic nodes in our model. In Figure 3, the tree topology
is denoted Ψ and the length of the branch leading to node i is νi.

We will assume that all possible labeled, unrooted tree topologies have equal probability. This is the
dnUniformTopology() distribution in RevBayes. Specify the topology stochastic node by passing in the
number of species n_species and tip labels names to the dnUniformTopology() distribution:

RevBayes > topology ~ dnUniformTopology(n_species, names)

For some types of stochastic nodes there are several available moves. Often the different moves explore
parameter space in a different way and nothing prevents one from using multiple different moves to improve
mixing. For the unrooted tree topology, we can use both a nearest-neighbor interchange move (mvNNI) and
a subtree-prune and regrafting move (mvSPR). These moves do not have tuning parameters associated with
them, thus you only need to pass in the topology node and weight

RevBayes > moves[4] <- mvNNI(topology, weight=10.0)
RevBayes > moves[5] <- mvSPR(topology, weight=5.0)

Next we have to create a stochastic node for each of the 2N−3 branches in our tree (where N = n_species).
We can do this using a for loop — this is a plate in our graphical model. In this loop, we can create each
branch-length node and assign each move. Copy this entire block of Rev code into the console:

mi <- 5
for (i in 1:n_branches) {

br_lens[i] ~ dnExponential(10.0)
moves[mi++] <- mvScale(br_lens[i],lambda=1,tune=true,weight=1)

}

It is convenient to monitor a deterministic variable of the branch lengths. In MrBayes, tree length was
reported to the log file instead of the length of each branch. The tree length is the sum of all branch lengths
and this can be computed using the sum() function which calculates the sum of any vector of values.
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RevBayes > tree_length := sum(br_lens)

Finally, we can create a branch-length phylogeny by combining the tree topology and branch lengths using
the treeAssembly() function, which applies the value of the ith member of the br_lens vector to the
branch leading to the ith node in topology. Thus, the phylogeny variable is a deterministic node:

RevBayes > phylogeny := treeAssembly(topology, br_lens)

Putting it All Together

Now that we have initialized virtually all of our model parameters and we can link all of the parts in the
stochastic node that will be clamped by the data. The sequence substitution model is a distribution called
the phylogenetic continuous-time Markov chain and we use the dnPhyloCTMC constructor function to create
this node. This distribution requires several input arguments: (1) the tree with branch lengths, (2) the
instantaneous rate matrix Q, the node characterizing the rate variation across sites (though siteRates
can be omitted if you do not assume rate variation across sites), (3) nSites is the number of sites in the
alignment, and (4) the type of character data.

RevBayes > phyloSeq ~ dnPhyloCTMC(tree=phylogeny, Q=Q, siteRates=gamma_rates
, nSites=data.nchar(1), type="DNA")

Once the character evolution model has been created, we can attach our sequence data to the tip nodes in
the tree.

RevBayes > phyloSeq.clamp(data)

When this function is called, RevBayes sets each of the stochastic nodes representing the tip nodes of the
tree to the sequence corresponding to that species in the alignment. This essentially tells the program that
this is where the DAG ends and the states of the tip nodes are fixed.

Now we can wrap up the whole model to conveniently access the DAG. To do this, we only need to give
the model() function a single node. With this node, the model() function can find all of the other nodes
by following the arrows in the graphical model:

RevBayes > mymodel <- model(sf)

Now we have specified a simple, single-partition analysis—each parameter of the model will be estimated
from every site in our alignment. If we inspect the contents of mymodel we can review all of the nodes in
the DAG:
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RevBayes > mymodel

Perform MCMC Analysis Under the Uniform Model

This section will cover setting up the MCMC sampler and summarizing the posterior distribution of trees.

Specify Monitors

For our MCMC analysis we need to set up a vector of monitors to save the states of our Markov chain.
The monitor functions are all called mn*, where * is the wildcard representing the monitor type. First, we
will initialize the model monitor using the mnModel function. This creates a new monitor variable that will
output the states for all model parameters when passed into a MCMC function.

RevBayes > monitors[1] <- mnModel(filename="output/conifer_uniform.log",
printgen=100)

The mnFile monitor will record the states for only the parameters passed in as arguments. We use this
monitor to specify the output for our sampled trees and branch lengths.

RevBayes > monitors[2] <- mnFile(filename="output/conifer_uniform.trees",
printgen=100, phylogeny)

Finally, create a screen monitor that will report the states of specified variables to the screen with mnScreen:

RevBayes > monitors[3] <- mnScreen(printgen=10, separator = " | ",
tree_length)

Initialize and Run MCMC

With a fully specified model, a set of monitors, and a set of moves, we can now set up the MCMC algorithm
that will sample parameter values in proportion to their posterior probability. The mcmc() function will
create our MCMC object:

RevBayes > mymcmc <- mcmc(mymodel, monitors, moves)

We can run the .burnin() member function if we wish to pre-run the chain and discard the initial states.
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RevBayes > mymcmc.burnin(generations=10000,tuningInterval=1000)

Now, run the MCMC:

RevBayes > mymcmc.run(generations=30000)

When the analysis is complete, you will have the monitor files in your output directory.

Summarize the MCMC Output

Methods for visualizing the marginal densities of parameter values are not currently available in RevBayes.
Thus, it is important to use programs like Tracer (Rambaut and Drummond, 2009) to evaluate mixing and
non-convergence. (RevBayes does, however, have a tool for convergence assessment called beca.)

RevBayes can also summarize the tree samples by reading in the tree-trace file:

RevBayes > treetrace <- readTreeTrace("output/conifer_uniform.trees")
RevBayes > treetrace.summarize()

The mapTree() function will summarize the tree samples and write the maximum a posteriori tree to file:

RevBayes > mapTree(treetrace,"output/conifer_uniform_map.tre")

Estimating the Marginal Likelihood

Typically, model comparison is performed prior to running the full MCMC analysis under a model. If
you calculated the Bayes factors to determine the relative support for the uniform model and found that
there was strong evidence supporting this model over others (hint: this is not true if you proceed with
this tutorial), then it would be worth your time to proceed with the MCMC steps outlined above. The
following steps will describe using stepping-stone and path sampling methods on a set of power posteriors
to estimate marginal likelihoods under the uniform model.

With a fully specified model, we can set up the powerPosterior() analysis to create a file of ‘powers’
and likelihoods from which we can estimate the marginal likelihood using stepping-stone or path sampling.
This method computes a vector of powers from a beta distribution, then executes an MCMC run for each
power step while raising the likelihood to that power. In this implementation, the vector of powers starts
with 1, sampling the likelihood close to the posterior and incrementally sampling closer and closer to the
prior as the power decreases.

Just to be safe, it is better to clear the workspace and re-load the data and model:
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RevBayes > clear()
RevBayes > source("RevBayes_scripts/uniform_partition_model.Rev")

First, we create the variable containing the power posterior. This requires us to provide a model and vector
of moves, as well as an output file name. The cats argument sets the number of power steps.

RevBayes > pow_p <- powerPosterior(mymodel, moves, "pow_p_uniform.out", cats
=50)

We can start the power posterior by first burning in the chain and and discarding the first 10000 states.

RevBayes > pow_p.burnin(generations=10000,tuningInterval=1000)

Now execute the run with the .run() function:

RevBayes > pow_p.run(generations=1000)

Once the power posteriors have been saved to file, create a stepping stone sampler. This function can read
any file of power posteriors and compute the marginal likelihood using stepping-stone sampling.

RevBayes > ss <- steppingStoneSampler(file="pow_p_uniform.out", powerColumnName="
power", likelihoodColumnName="likelihood")

Compute the marginal likelihood under stepping-stone sampling using the member function marginal()
of the ss variable and record the value in Table 3.

RevBayes > ss.marginal()

Path sampling is an alternative to stepping-stone sampling and also takes the same power posteriors as
input.

RevBayes > ps <- pathSampler(file="pow_p_uniform.out", powerColumnName="power",
likelihoodColumnName="likelihood")

Compute the marginal likelihood under stepping-stone sampling using the member function marginal()
of the ps variable and record the value in Table 3.
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RevBayes > ps.marginal()

Stop here or continue on to evaluate partitioned models...

1.5 Partitioning by Gene Region

The uniform model used in the previous section assumes that all sites in the alignment evolved under
the same process described by a shared tree, branch length proportions, and parameters of the GTR+Γ
substitution model. However, our alignment contains two distinct gene regions—atpB and rbcL—so we
may wish to explore the possibility that the substitution process differs between these two gene regions.
This requires that we first specify the data partitions corresponding to these two genes, then define an
independent substitution model for each data partition.

Clear Workspace and Reload Data

RevBayes > clear()

Since we wish to avoid individually specifying each parameter of the GTR+Γ model for each of our data
partitions, we can loop over our datasets and create vectors of nodes. To do this, we begin by creating a
vector of data file names:

RevBayes > filenames <- v("data/conifer_atpB.nex", "data/conifer_rbcL.nex")

Set a variable for the number of partitions:

RevBayes > n_parts <- filenames.size()

And create a vector of data matrices called data:

for (i in 1:n_parts){
data[i] <- readCharacterData(filenames[i])[1]

}
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Next, we can initialize some important variables. This does require, however, that both of our alignments
have the same number of species and matching tip names.

RevBayes > n_species <- data[1].ntaxa()
RevBayes > names <- data[1].names()
RevBayes > n_branches <- 2 * n_species - 3

Specify the Parameters by Looping Over Partitions

We can avoid creating unique names for every node in our model if we use a for loop to iterate over
our partitions. Thus, we will only have to type in our entire GTR+Γ model parameters once. This will
produce a vector for each of the unlinked parameters — e.g., there will be a vector of shape nodes where
the stochastic node for the first partition (atpB) will be shape[1] and the stochastic node for the second
partition (rbcL) will be called shape[2].

mi <- 0 # an iterator for the move vector
for (i in 1:n_parts){
## index i=1 : atpB gene ##
## index i=2 : rbcL gene ##

# Exchangeability rates #
er_prior[i] <- v(1,1,1,1,1,1)
er[i] ~ dnDirichlet(er_prior[i])
moves[mi++] <- mvSimplexElementScale(er[i], alpha=10, tune=true, weight=3)

# Stationary base frequencies #
sf_prior[i] <- v(1,1,1,1)
sf[i] ~ dnDirichlet(sf_prior[i])
moves[mi++] <- mvSimplexElementScale(sf[i], alpha=10, tune=true, weight=2)

# Instantaneous rate matrix (deterministic) #
Q[i] := gtr(er[i],sf[i])

# Gamma-dist site rates #
shape_prior[i] <- 0.05
shape[i] ~ dnExponential( shape_prior[i] )
gamma_rates[i] := discretizeGamma( shape[i], shape[i], 4 )
moves[mi++] <- mvScale(shape[i], lambda=0.8, tune=true, weight=3.0)

}

Uniform Topology and Branch Lengths

Our two genes evolve under different GTR rate matrices with different mean-one gamma distributions on
the site rates. However, we do assume that they share a single topology and set of branch lengths.

# Unrooted tree topology distribution #
topology ~ dnUniformTopology(n_species, names)
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# Tree topology moves #
moves[mi++] <- mvNNI(topology, weight=10.0)
moves[mi++] <- mvSPR(topology, weight=5.0)

#### Specify a prior and moves on the branch lengths ####
# Create a vector of branch-length variables using a for loop #
for (i in 1:n_branches) {
br_lens[i] ~ dnExponential(10.0)
moves[mi++] <- mvScale(br_lens[i],lambda=1,tune=true,weight=1)

}

# A deterministic node for the tree length #
tree_length := sum(br_lens)

# Build the tree by combining the topology with br_lens #
phylogeny := treeAssembly(topology, br_lens)

Putting it All Together

Since we have a rate matrix and a site-rate model for each partition, we must create a phylogenetic CTMC
for each gene. Additionally, we must fix the values of these nodes by attaching their respective data
matrices. These two nodes are linked by the phylogeny node and their log-likelihoods are added to get
the likelihood of the whole DAG.

for (i in 1:n_parts){
phyloSeq[i] ~ dnPhyloCTMC(tree=phylogeny, Q=Q[i], siteRates=gamma_rates[i

], nSites=data[i].nchar(1), type="DNA")
phyloSeq[i].clamp(data[i])

}

And we can pass in a single, shared node to wrap up our model DAG:

RevBayes > mymodel <- model(topology)

Estimating the Marginal Likelihood

Now run the power posterior analysis on the two-gene model.

RevBayes > pow_p <- powerPosterior(mymodel, moves, file="pow_p_twogene.out",
cats=50)

RevBayes > pow_p.burnin(generations=1000,tuningInterval=100)
RevBayes > pow_p.run(generations=1000)
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Calculate the marginal likelihoods under stepping-stone sampling:

RevBayes > ss <- steppingStoneSampler(file="pow_p_twogene.out",
powerColumnName="power", likelihoodColumnName="likelihood")

RevBayes > ss.marginal()

And under path sampling:

RevBayes > ps <- pathSampler(file="pow_p_twogene.out", powerColumnName="
power", likelihoodColumnName="likelihood")

RevBayes > ps.marginal()

Record the marginal likelihoods in Table 3.

1.6 Partitioning by Codon Position and by Gene

Because of the genetic code, we often find that different positions within a codon (first, second, and third)
evolve at different rates. Thus, using our knowledge of biological data, we can devise a third approach that
further partitions our alignment. For this exercise, we will partition sites within the rbcL gene by codon
position.

Clear Workspace and Reload Data

RevBayes > clear()
RevBayes > data[1] <- readCharacterData("data/conifer_atpB.nex")[1]
RevBayes > data_rbcL <- readCharacterData("data/conifer_rbcL.nex")[1]

Specify Data Matrices for Each Codon Position

We must now add our codon-partitions to the data vector that already contains the matrix for atpB in the
first index. Thus, the second index will be the rbcL codon position 1. We can create this by calling the
helper function setCodonPartition(), which is a member function of the data matrix. We are assuming
that the gene is in frame, meaning the first column in your alignment is a first codon position. The
setCodonPartition() function takes a single argument, the position of the alignment you wish to extract.
It then returns every third column, starting at the index provided as an argument.

Before we can use the use the setCodonPartition() function, we must first populate the position in the
data matrix with some sequences. Then we call the member function of data[2] to exclude all but the
1st positions.

RevBayes > data[2] <- data_rbcL
RevBayes > data[2].setCodonPartition(1)
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Assign the 2nd codon positions to data[3]:

RevBayes > data[3] <- data_rbcL
RevBayes > data[3].setCodonPartition(2)

Assign the 3rd codon positions to data[4]:

RevBayes > data[4] <- data_rbcL
RevBayes > data[4].setCodonPartition(3)

Now we can query the vector of data matrices to get the size, which is 4:

RevBayes > n_parts <- data.size()

And set the special variables from the data:

RevBayes > n_species <- data[1].ntaxa()
RevBayes > names <- data[1].names()
RevBayes > n_branches <- 2 * n_species - 3

Specify the Parameters by Looping Over Partitions

Setting up the GTR+Γ model is just like in the two-gene analysis, except this time n_parts is equal to 4,
so now our vectors of stochastic nodes should all contain nodes for each of the partitions.

mi <- 0 # an iterator for the move vector
for (i in 1:n_parts){
## index i=1 : atpB gene
## index i=2 : rbcL gene position 1
## index i=3 : rbcL gene position 2
## index i=4 : rbcL gene position 3

# Exchangeability rates #
er_prior[i] <- v(1,1,1,1,1,1)
er[i] ~ dnDirichlet(er_prior[i])
moves[mi++] <- mvSimplexElementScale(er[i], alpha=10, tune=true, weight=3)

# Stationary base frequencies #
sf_prior[i] <- v(1,1,1,1)
sf[i] ~ dnDirichlet(sf_prior[i])
moves[mi++] <- mvSimplexElementScale(sf[i], alpha=10, tune=true, weight=2)
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# Instantaneous rate matrix (deterministic) #
Q[i] := gtr(er[i],sf[i])

# Gamma-dist site rates #
shape_prior[i] <- 0.05
shape[i] ~ dnExponential( shape_prior[i] )
gamma_rates[i] := discretizeGamma( shape[i], shape[i], 4 )
moves[mi++] <- mvScale(shape[i], lambda=0.8, tune=true, weight=3.0)

}

Uniform Topology and Branch Lengths

We are still assuming that the genes share a single topology and branch lengths.

# Unrooted tree topology distribution #
topology ~ dnUniformTopology(n_species, names)

# Tree topology moves #
moves[mi++] <- mvNNI(topology, weight=10.0)
moves[mi++] <- mvSPR(topology, weight=5.0)

#### Specify a prior and moves on the branch lengths ####
# Create a vector of branch-length variables using a for loop #
for (i in 1:n_branches) {
br_lens[i] ~ dnExponential(10.0)
moves[mi++] <- mvScale(br_lens[i],lambda=1,tune=true,weight=1)

}

# A deterministic node for the tree length #
tree_length := sum(br_lens)

# Build the tree by combining the topology with br_lens #
phylogeny := treeAssembly(topology, br_lens)

Putting it All Together

We must specify a phylogenetic CTMC node for each of our partition models.

for (i in 1:n_parts){
phyloSeq[i] ~ dnPhyloCTMC(tree=phylogeny, Q=Q[i], siteRates=gamma_rates[i

], nSites=data[i].nchar(1), type="DNA")
phyloSeq[i].clamp(data[i])

}

And then wrap up the DAG using the model() function:
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RevBayes > mymodel <- model(topology)

Estimating the Marginal Likelihood

Sample likelihoods from the set of power posteriors:

RevBayes > pow_p <- powerPosterior(mymodel, moves, file="
pow_posterior_genecodon.out", cats=50)

RevBayes > pow_p.burnin(generations=1000,tuningInterval=100)
RevBayes > pow_p.run(generations=1000)

Compute the stepping-stone estimate of the marginal likelihood:

RevBayes > ss <- steppingStoneSampler(file="pow_posterior_genecodon.out",
powerColumnName="power", likelihoodColumnName="likelihood")

RevBayes > ss.marginal()

Compute the path-sampling estimate of the marginal likelihood:

RevBayes > ps <- pathSampler(file="pow_posterior_genecodon.out",
powerColumnName="power", likelihoodColumnName="likelihood")

RevBayes > ps.marginal()

Now record the marginal likelihoods in Table 3.

1.7 Compute Bayes Factors and Select Model

Now that we have estimates of the marginal likelihood under each of our different models, we can evaluate
their relative plausibility using Bayes factors. Use Table 3 to summarize the marginal log-likelihoods
estimated using the stepping-stone and path-sampling methods.

Phylogenetics software programs log-transform the likelihood to avoid underflow, because multiplying
likelihoods results in numbers that are too small to be held in computer memory. Thus, we must use a
different form of equation 3 to calculate the ln-Bayes factor (we will denote this value K):

K = ln[BF (M0, M1)] = ln[P(X | M0)] − ln[P(X | M1)], (4)

where ln[P(X | M0)] is the marginal lnL estimate for model M0. The value resulting from equation 4 can
be converted to a raw Bayes factor by simply taking the exponent of K

BF (M0, M1) = eK. (5)

Alternatively, you can interpret the strength of evidence in favor of M0 using the K and skip equation 5.
In this case, we evaluate the K in favor of model M0 against model M1 so that:
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Table 3: Estimated marginal likelihoods for different partition configurations∗.
Marginal lnL estimates

Partition Stepping-stone Path sampling

1.4 uniform (M1)

1.5 moderate (M2)

1.6 extreme (M3)
∗you can edit this table

if K > 1, then model M0 wins
if K < −1, then model M1 wins.

Thus, values of K around 0 indicate ambiguous support.

Using the values you entered in Table 3 and equation 4, calculate the ln-Bayes factors (using K) for the
different model comparisons. Enter your answers in Table 4 using the stepping-stone and the path-sampling
estimates of the marginal log likelihoods.

Table 4: Bayes factor calculation∗.
ln-Bayes Factor (K)

Model comparison Stepping-stone Path sampling

M1, M2

M2, M3

M1, M3

Supported model?
∗you can edit this table

Once you complete Table 4, you will notice that the Bayes factor comparison indicates strong evidence
in support of the highly partitioned model using both the stepping-stone and path sampling estimates of
the marginal likelihoods. However, this does not mean that model M3 is the true partition model. We
only considered three out of the many, many possible partitions for 2,659 sites (the number of possible
partitions can be viewed if you compute the 2659th Bell number). Given the strength of support for the
highly partitioned model, it is possible that further partitioning is warranted for these data. In particular,
partitioning the dataset by codon position for both atpB and rbcL is an important next step for this
exercise (consider taking some time on your own to test this model).

Because of the computational costs of computing marginal likelihoods and the vast number of possible
partitioning strategies, it is not feasible to evaluate all of them. New methods based on nonparametric
Bayesian models have recently been applied to address this problem (Lartillot and Philippe, 2004; Huelsen-
beck and Suchard, 2007; Wu, Suchard and Drummond, 2013). These approaches use an infinite mixture
model (the Dirichlet process; Ferguson, 1973; Antoniak, 1974) that places non-zero probability on all of
the countably-infinite possible partitions for a set of sequences. Bayesian phylogenetic inference under
these models is implemented in the program PhyloBayes (Lartillot, Lepage and Blanquart, 2009) and the
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subst-bma plug-in for BEAST2 (Wu, Suchard and Drummond, 2013).

Note that Bayes factors based on comparison of HM-based marginal likelihoods often strongly favor the
most extremely partitioned mixed model. In fact, the harmonic mean estimator has been shown to provide
unreliable estimates of marginal likelihoods, compared to more robust approaches (Lartillot and Philippe,
2006; Xie et al., 2011; Fan et al., 2011). Based on these studies, it is recommended that you avoid using
HM-derived marginal likelihoods for Bayes factor comparisons. (The Canadian Bayesian Radford Neal
says the harmonic mean is the “worst Monte Carlo method ever”.)

1.8 Perform MCMC Analysis Under Preferred Model

Clear Workspace and Load the Data and Model

RevBayes > clear()
RevBayes > source("RevBayes_scripts/<preferred>_partition_model.Rev")

Specify Monitors

RevBayes > monitors[1] <- mnModel(filename="conifer_prefmodel_mcmc.log",
printgen=100)

RevBayes > monitors[2] <- mnFile(filename="conifer_prefmodel_mcmc.trees",
printgen=100, phylogeny)

RevBayes > monitors[3] <- mnScreen(printgen=10, separator = " | ",
tree_length)

Initialize and Run MCMC

RevBayes > mymcmc <- mcmc(mymodel, monitors, moves)

RevBayes > mymcmc.burnin(generations=10000,tuningInterval=1000)

RevBayes > mymcmc.run(generations=30000)

1.9 Summarize and Analyze MCMC Output
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RevBayes > treetrace <- readTreeTrace("conifer_prefmodel_mcmc.trees")
RevBayes > treetrace.summarize()

RevBayes > mapTree(treetrace,"conifer_prefmodel_MAP.tre")

The trees in these files are also annotated with various branch- or node-specific parameters or statistics in
an extended Newick format called NHX. We can use FigTree to visualize these summary trees.

• Open the summary tree in FigTree: conifer_prefmodel_MAP.tre.

• Use the tools on the side panel to display the posterior probabilities as node labels.

Batch Mode

If you wish to run this exercise in batch mode, the files are provided for you.

You can carry out these batch commands by providing the file name when you execute the rb binary in
your unix terminal (this will overwrite all of your existing run files).

• $ rb full_analysis.Rev

Useful Links
• RevBayes: https://github.com/revbayes/code
• MrBayes: http://mrbayes.sourceforge.net
• PhyloBayes: http://www.phylobayes.org
• Bali-Phy: http://www.bali-phy.org
• Tree Thinkers: http://treethinkers.org

Questions about this tutorial can be directed to:
• Tracy Heath (email: tracyh@berkeley.edu)
• Michael Landis (email: mlandis@berkeley.edu)
• Sebastian Höhna (email: sebastian.hoehna@gmail.com)

This tutorial was written by Tracy Heath, Michael Landis, and Sebastian Höhna; licensed
under a Creative Commons Attribution 4.0 International License. (This tutorial is based on the Phylo-
genetic Inference using MrBayes v3.2 tutorial written by Tracy Heath, Conor Meehan, and Brian Moore
and some content is reproduced here. Mark Holder, Ben Liebeskind, Emily McTavish, and April Wright
provided helpful comments.)

Version dated: July 30, 2014
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